On Complete Arcs Arising from Plane Curves


Journal article


M. Giulietti, F. Pambianco, F. Torres, E. Ughi
Des. Codes Cryptogr., 2000

Semantic Scholar ArXiv DBLP DOI
Cite

Cite

APA   Click to copy
Giulietti, M., Pambianco, F., Torres, F., & Ughi, E. (2000). On Complete Arcs Arising from Plane Curves. Des. Codes Cryptogr.


Chicago/Turabian   Click to copy
Giulietti, M., F. Pambianco, F. Torres, and E. Ughi. “On Complete Arcs Arising from Plane Curves.” Des. Codes Cryptogr. (2000).


MLA   Click to copy
Giulietti, M., et al. “On Complete Arcs Arising from Plane Curves.” Des. Codes Cryptogr., 2000.


BibTeX   Click to copy

@article{m2000a,
  title = {On Complete Arcs Arising from Plane Curves},
  year = {2000},
  journal = {Des. Codes Cryptogr.},
  author = {Giulietti, M. and Pambianco, F. and Torres, F. and Ughi, E.}
}

Abstract

AbstractWe point out an interplay between $$F_q$$ -Frobenius non-classical plane curves and complete $$\left( {k,d} \right)$$ -arcs in $$P^{\text{2}} \left( {F_q } \right)$$ . A typical example that shows how this works is the one concerning an Hermitian curve. We present some other examples here which give rise to the existence of new complete $$\left( {k,d} \right)$$ -arcs with parameters $$k = d\left( {q - d + 2} \right)$$ and $$d = \left( {q - 1} \right)/\left( {q\prime - 1} \right),q\prime$$ being a power of the characteristic. In addition, for q a square, new complete $$\left( {k,d} \right)$$ -arcs with either $$k = q\sqrt q b + 1$$ and $$d = \left( {\sqrt q + 1} \right)b\left( {2 \leqslant b \leqslant \sqrt q - 1} \right)$$ or $$k = \left( {q - 1} \right)\sqrt q b + \sqrt q + 1$$ and $$d = \left( {\sqrt q + 1} \right)b\left( {2 \leqslant b \leqslant \sqrt q - 2} \right)$$ are constructed by using certain reducible plane curves.


Share


Follow this website


You need to create an Owlstown account to follow this website.


Sign up

Already an Owlstown member?

Log in