Journal article
Des. Codes Cryptogr., 2017
APA
Click to copy
Bartoli, D., Giulietti, M., & Montanucci, M. (2017). Linear codes from Denniston maximal arcs. Des. Codes Cryptogr.
Chicago/Turabian
Click to copy
Bartoli, D., M. Giulietti, and M. Montanucci. “Linear Codes from Denniston Maximal Arcs.” Des. Codes Cryptogr. (2017).
MLA
Click to copy
Bartoli, D., et al. “Linear Codes from Denniston Maximal Arcs.” Des. Codes Cryptogr., 2017.
BibTeX Click to copy
@article{d2017a,
title = {Linear codes from Denniston maximal arcs},
year = {2017},
journal = {Des. Codes Cryptogr.},
author = {Bartoli, D. and Giulietti, M. and Montanucci, M.}
}
In this paper we construct functional codes from Denniston maximal arcs. For $$q=2^{4\ell +2}$$q=24ℓ+2 we obtain linear codes with parameters $$[(\sqrt{q}-1)(q+1),5,d]_q$$[(q-1)(q+1),5,d]q where $$\lim _{q \rightarrow +\infty } d=(\sqrt{q}-1)q-\sqrt{q}$$limq→+∞d=(q-1)q-q. We also find for $$q=16,32$$q=16,32 a number of linear codes which appear to have larger minimum distance with respect to the known codes with same length and dimension.