Linear codes from Denniston maximal arcs


Journal article


D. Bartoli, M. Giulietti, M. Montanucci
Des. Codes Cryptogr., 2017

Semantic Scholar ArXiv DBLP DOI
Cite

Cite

APA   Click to copy
Bartoli, D., Giulietti, M., & Montanucci, M. (2017). Linear codes from Denniston maximal arcs. Des. Codes Cryptogr.


Chicago/Turabian   Click to copy
Bartoli, D., M. Giulietti, and M. Montanucci. “Linear Codes from Denniston Maximal Arcs.” Des. Codes Cryptogr. (2017).


MLA   Click to copy
Bartoli, D., et al. “Linear Codes from Denniston Maximal Arcs.” Des. Codes Cryptogr., 2017.


BibTeX   Click to copy

@article{d2017a,
  title = {Linear codes from Denniston maximal arcs},
  year = {2017},
  journal = {Des. Codes Cryptogr.},
  author = {Bartoli, D. and Giulietti, M. and Montanucci, M.}
}

Abstract

In this paper we construct functional codes from Denniston maximal arcs. For $$q=2^{4\ell +2}$$q=24ℓ+2 we obtain linear codes with parameters $$[(\sqrt{q}-1)(q+1),5,d]_q$$[(q-1)(q+1),5,d]q where $$\lim _{q \rightarrow +\infty } d=(\sqrt{q}-1)q-\sqrt{q}$$limq→+∞d=(q-1)q-q. We also find for $$q=16,32$$q=16,32 a number of linear codes which appear to have larger minimum distance with respect to the known codes with same length and dimension.


Share


Follow this website


You need to create an Owlstown account to follow this website.


Sign up

Already an Owlstown member?

Log in